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THE STRONG LAW OF LARGE NUMBERS FOR 
MARTINGALES WITH DETERMINISTIC 
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The strong law of large numbers is proved for multivariate martingales with deterministic quadratic 
varizricn, aiong the same lines as ir! Lai, We: and Kobbins :?Y?Y1. though the setting here n n o i e  genera!. 
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1 INTRODUCTION 

1.1 For scalar valued martingales the strong law of large numbers (SLLN) is 
reiatively easily proved: if M is locally square integrable martingale, then (M); ' M ,  
converges a.s. as t + oo and the limit equals zero if (M), -+ oo as. (see Liptser and 
Shiryayev, 1989, Section 2.6). But in the multivariate case the matter is different due 
to the possibly complicated dependence structure between the components (see e.g. 
Christopeit (1986), Lai and Wei (1982), Le Breton and Musiela (1987, 1989), Mel'nikov 
(1986) and Novikov (1985)). The SLLN in this case refers to (M);'M, + 0 a.s. as 
t -+ oo, where M is an Rd valued locally square integrable martingale and (M) is 
the Rdx valued tensor predictable covariation process. The motivation in the above 
mentioned papers for investigating whether a SLLN holds traditionally stems from 
(pseudo) least squares estimation. 

As is shown in this paper, the problem still has a relatively simple solution under 
the restriction that the quadratic variation process of the multivariate margingale in 
question is deterministic. 

The first result in this direction has been proved by Lai, Wei and Robbins (1979) 
in the discrete time setting in a paper on least squares estimation (see also Le Breton 
and Musiela (1986)). Their proofs heavily depend on the fact that all components are 
actually transforms of one and the same real valued margingale. Both these limita- 
tions are dropped in the present paper. Our approach is much in spirit of Lai WP: 
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and Robbins (1979), and loosely speaking generalizes all the intermediate steps 
undertaken in it. It turns out that the intermediate results can be presented in a more 
compact and elegant form; see Sections 3 and 4 below. We want to empasize that 
there is a good reason for taking up this older method for analysing the behaviour 
of (M)- 'M instead of what most recent authors do, which is giving bounds for the 
quadratic form M'(M)-'M and then applying Schwarz' inequality which finally 
yields conditions on the growth rates of minimal and max~mal e~genvalues o i  <M}. 
I t  appears to us that this approach is not suitable to obtain the sharper results of 
ours in the presence of the restriction that (M) is deterministic, whereas the 
dimension reduction technique of Lai, Wei and Robbins (1979) provides a useful tool 
to obtain a criterion under which the SLLN holds in terms of an intuitively appealing 
probabilistic interpretation. 

It should be noticed however that unlike the present paper in Lai, Wei and Robbins 
(1979) the object in question is not necessarily formed by transforming a real valued 
martingale (but actually any so-called convergence system: see e.g. Chen, Lai and 
Wei (19811, Lai and Wei (1984;); cf. also Solo (19S1)), while in Kaufmann (1987) it is 
a transformation of a real valued martingale which satisfies some moment conditions. 

1.2 In Section 2 the main results of this paper are formulated. The calculations 
presented in Section 3 are then used for proving in Section 5 a key convergence 

. -. theorem forniulated lij Sccfinii 4. : I:e proof of :he main thegrerr! 1 i b  give11 hi. Section 
6. Finally, we discuss in Section 7 an appiication i o  ieabi squhi -6  ~siiiiiatfoii. 

2 MAIN RESULTS 

2.1 The basic setting is as follows. On a complete filtered probability space (0, F, 
[F, P) all our stochastic processes are defined. All martingales are understood as being 
so with respect to the filtration F. 

Let M : R  x [0, w ) + R d  be a martingale. Let (M) :R  x [0, c o ) + R d x d  be its 
predictable quadratic variation process. So we assume that for all components mi of 
M we have that E (mf)' < XI, for all t 2 0, that is M E '9RJZd2. Moreover, we will assume 
throughout this paper that the quadratic variation process (M) is deterministic. So 
for its ij-element we have (M)" = E(mimJ). 

It may happen that for some (or all) t the matrix (M), is singular. Therefore 
we will consider &Id + (M),, where E > 0 and I the identity matrix, and denote it by 
A,. Let V = (&Id + (M))-' = A-I. (It is also possible to study directly (M)+M,  
where (M)' is the Moore-Penrose generalized inverse. This seems however to lead 
to many technical complications. that are beyond the purpose of this paper; see 
Dzhaparidze and Spreij (1992) for a related discussion). 

2.2 We will be only interested in the limit behaviour of V, M, as t -+ co and we will 
show that under suitable assumptions 
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First we introduce some notations. Let ei be the ith unit vector in Rd and 
c; ' = e;V,ei .  Let g: [O, co) -, R be such that the following integral exists 

Let D: [O, 9) -, R d y a  be such that D, is a diagonal matrix for ail t 2 0, with 
diagonal elements Di, = &,). 

2.3 The main result of this paper is the following 

THEOREM 1 Let g, c ,  V and D he as defined uhoue. Then 

The proof of this theorem is presented in Section 5. It involves a series of auxiliary 
results, which we present after some additional computations. 

Remark Suppose one is only interested in a weak law of large numbers, that is 
( M ) ; ' M ,  -t 0 in probability as r -, co (assume here that (M);' exists for t large 
enough). A sufficient condition is then EMi(M);2M,  +O, which is equivalent to 
t r ( M ) ;  ' -, 0 and hence c ,  -, rx, (i = 1 ,  . . . , d). The observation that ci1 + co is 
sufficient for a weak law to hold, suggests that a condition on the behaviour of the 
eigpf;y$cp~ ~f (!&j) be .,..y-..."V cr~n~rfltings for the SLLN. &e of the a i ~ l s  of this 
paper is to show that this suggestion can be justified. Indeed it follows from Theorem 
1 that (MI); + U is a sufficient condition for the SLLN to hold, and also gives some 
information on the rate of convergence in terms of the matrices D,. 

2.4 Assertion (i) of the following corollary is obvious, and assertion (ii) is proved in 
Section 7.2. 

COROLLARY 2 

i) Let ( M ) ,  be non singular for r large enough. Then the assertion of Theorem 1 
remains true i f  we take E = 0. 

ii) Assume lim,,, u l ( M ) , u  for all u E Rd is either zero or infinity. Then 

lim V , M ,  = 0 a s .  
1- oU 

This statement remais valid i f  V is substituted b y  a generalized inverse (MI)+. 
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3 AUXILIARY ASSERTIONS 

3.1 First we introduce some more notations. Write M  = , where m E 9.X: and [:I 
M E  '9Jl;- ,. Surely m = e', M  and M  = JiM with J i  = [0, I d -  ,I. Denote A = & I d -  + 
( M ?  = J ; A J ,  and V = A '. 

We repeatedly will use the following identities: 

We can present V as follows: 

!Hr!c ~ n c i  eii~wheri: t h i  time index r wiii ofren bc omiitedi. 
using the following representation for A = 61,  + ( M ) :  

where c = a - ( m ,  M ) V ( M ,  m )  with a = E + (m). Observe that 

A b  = ce, and c = det Aldet A  = b'Ab = b1A1 with A ,  = Ae,. (5 )  

Hence by (3) 

and we see that the first component in (6) is equal to c-'b'M. Therefore it is easily 
seen that studying of V M  is equivalent to studying of quantities like c-'b'M, since 
any component of V M  is of this form after a suitable permutation of M  and ( M ) .  

3.2 We need the following multivariate version of Theorem 8 in Liptser and 
Shiryayev (19891. Section 2.2. adapted to the present situation. 

PROPO~ITION 3 Let M  and M be as above. There exists a predicable d x (d - 1)- 
mutrix valued process 4 with the following properties: 

i) M M )  = d ( M ,  M ) ,  
ii) 4d(M)&'  5 d ( M ) .  

The proof proceeds along the same lines as in the univariate case. 
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Remark Unlike the last case the process 4 here may be not uniquely determined 
as, for instance, in the typical case in which A4 = z:.m with a vector valued function 
v and a sclar valued martingale m, because now d(. l . l ) , ,d(m), = i . , ~ ;  is singular for 
each t. However the martingale 4 .  A4 does net depend or, !he particu!ar C ~ O ~ C P  cf 
4. Here and elsewhere below. means stochastic integration. 

3.3 The b e h s ~ l o u r  of h'"'L4 ~ 1 1 ' 1  be 5tudied b j  i c p r ~ s c ~ t i n g  it  as  

Proof 

i) By f2) 

Indeed, the second and third equality, for instance, are easily verified as follows: 

Now, (i) follows from (8). 

ii) As is easily seen bv definition of d in Proposttion 3. the rnnrtingles N - n 
and M are orthogona!: 

iii) By (5) dc = d(bfA)e, = b '  d(M)e, + dbfAe,. hence 
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and 

( N ) ,  - c, = C Ah'A(M)h = 1 [0 - b'A(M1, M ) V - ] A ( M ) h  
p.!! [O I !  

This gives (iii), since by (2) we have 

iv) Surely. (iiij implies (iv), since the second term on the right hand side of (iii) 
gives a nonnegative contrihu~ion. 

. - .  
v) Observe iilai is noii incieaj;ing becaiisc i .  : = e . ; ~ . e " ~  with 'C x m  increasing, 

aii:ce (PA) 1s noi? decreasing. The equality TI, = c '6 fniiows from ihe firs1 relalion 
in (5). 

by (2), so that if q = 0 dc-' a.e., then 

This means that 

(see (2)). Hence qA - is dVl a.e. zero on (0, co) and so q is a.e. zero on (0, co) with 
respect to dVl. 

4 A CONVERGENCE THEOREM 

4.1 Theorem 5 formulated in this section is crucial for studying the behaviour of 
ML .b.  

Let A:  [0, co) -+ Yd where Yd is the set of non negative definite (d x &matrices. 
Assume that A,  > 0 and that A is non decreasing, so A, 2 A, for t 2 s. Since all the 
A, are invertibie, J( = A;' is well defined for-all t 2 0, and for t z 0 we have 
dl7 = -- I' d4L7 (see (3)) 
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For h: [0, CO) + R' we use the following notation h E LZ([O, x), dA)  if the following 
integral is well defined and finite: 

Oefine similarly LZ((@, *), dV);  ebserve thzt db; l: i. 

THEOREM 5 Let M be an Rd-valued martingale with ( M ) ,  = E (M, Mi) < oc, for all 
t 2 0. Let A = EI + (M), V = A - ' and D o :  (0, 'm) + Rd, Do E LZ((O, x),  dV). Then 

lim S Do' dVM - exists and is finite a s .  
t + m  [ O , r ]  

4.2 The proof of this theorem is given in Section 5. It is hased on a series of technics! 
lemmas which are presented below. 

LFMM A 6 For a given h E Id2((@, nr;), dV), the firnction h:  [O, m) + Rd giwn hy 

is weli defined. and moreocer E iZip, x 1. dAi. 

Proof' We prove the following three facts: 

i) t % ; ~ , t % ,  is finite for all t 2 0 and tends to zero as t + CO, which also shows that 
t%, is well defined for all t 2 0. 

ii) Vh E LZ((O, CO), dA)  
h Î .... . - - ... . , 1. 1 r 2 ,. . 2 A " A  I- f. ,I A f ., . 

1111 -- - Y t L  t (I", W,, aim J ( o ,  m )  ii. = - S(O,  m )  h' dVh - iio A. no. 

Observe that the last fact means that 4 s L2([0, xj ,  d 4 j ,  since 

S t? dAt% = S k d ~ t %  + t?o~oh"o with the convention A,- = 0. 
[O, m )  (0.  m )  

i) Denote by R the matrix such that A = RZ and R = R'. Taking into considera- 
tion that lim J( = Vm exists and is positive semi-definite, we get ji) due to the following 
consequence of Schwartz' inequality: 

since xi e: R, J( R,ei = d. 
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ii) On (0, a) the identities (2) are valid, so that (ii) is implied by dV+ V dAV I 0. 

iii) Along with the identities (2), we have dh" = dVh on (0, co). Now, by 

6 - L  = -Ti h and k d ! ~ h " ) =  h ' ~  dvh + h"'dAh= L ' d A h " - - h ' d A ~ h = L ' d ~ h  

we get 

dAh - d(h"'Ah") = (A' - h"') ~ A C ;  - h' dVA- L.. = h'V dA(L- - L) = -hf dVh. 

Hence 

where we have used jii. 

lim J hm - d V exists and is jinite a.s. 
t + m  [ O . t ]  

Proof Integrating by parts we get f[,,,l hm- dV = &m, - f IO, , l  & dm where h is 
given by (10). Then h" E L2([0, co), dA) in view of Lemma 5. Let now 

which is bounded in t. Hence lim,,, f ir  exists and is finite as .  Surely also f l O s r l  k dm 
has a limit as .  where kt = -f,,,,lhl dT/. Then Kronecker's lemma for martingales 
(see Lipster and Shiryayev (1989), Section 2.6) applies, since I h,l decreases to zero, 
which yields lL,(m, -t 0 as .  and hence lh,m,l + 0 as .  

4.3 We want to emphasize here that in this lemma it is important that h and V are 
deterministic, because now h" is also deterministic and therefore 61 in Section 4.2 is 
a convergent martingale. If we would have started with predictabie processes h and 
K it would be not have been possible to define, as we did above, a martingale like fi .  

It is indeed Lemma 7, and its generalization Theorem 5, that has no counterpart 
if one wants to treat only predictable quadratic variation processes. Therefore we 
want to stress that it is at this point that we obtain sharper results then, for instance, 
in Christopeit (1986), Lai and Wei j1982), Le Breton and Musiela (1987, 1989), 
Mel'nikov (1986) or Novikov (1985). 
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5 PROOF O F  THEOREM 5 

5.1 We use induction with respect to the dimension d of the space where W takes 
its values. Clearly for d = 1 the theorem reduces to Lemma 6. So assume the theorem 

holds for d - 1. As in Section 3 we write M = , preserving all the notations 

Introduced there. Usmg (6) and the relatlon dW = - W d ( M ) W _  (c i  ( 2 ) )  we spllt the 
integral in question in two terms 

S On'  VIM - = I,(t) + 12(t) 
ro. tl 

where 

with h = A d W h  and 0 defined by d(M. Ail) = @d(A1> as in Propos~tlon 3, and 

(see Proposition 4 (v)), since dVl = - V d<M)Vl - by (2). 

5.2 We will show that h E Lz(dV) as On E LZ(dV) by assumption, and this will imply 
that Il(t) has a limit a.s. as t -, m, that is 

since by the induction hypothesis we have assumed that the assertion of the theorem 
holds for d - 1. In fact, by (2) and Proposition 3 (ii) 

5.3 Next we direct our attention towards Iz(t). We write 12(t) = I&) + I&) with 

S Z,(t) = On' dVl N -  = N  - dy and I,(t) = On' dV,(Ml. b) - 
ro. 11 S lo. [I 

where y = -c- '  (see Proposition 4 (v)). 
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Since d(RJ>/dy I 1 by Proposition 4 (iv), I,([) converges by Lemma 7, since 

with r = tr V' (so that dV' is dominated by d.r). We have the becond inequality by 
assumption, and the first by the following consequence of Schwartz' inequality: 

5.4 The next term that we have to consider is I,(t). Introduce 

Integrating by parts we get 

by (2) and Proposition 4 (i). Again, we will show by the induction hypothesis that, 
the second term on the left hand side of (13) has a limit as t + m a.s., that is by 
checking that 

Tine first inequaiity foiiows from Proposition 4 (iiij, aiid second from the fact that 
p E L2(dy)  with y = - llc, which is verified as follows: in view of Proposition 4 (v), 
write 

d 
On' -- dy 

and then apply Lemma 6 (scalar case). Hence, the second term in (13) converges a s .  
as t -+ oo. Of course, if in this term we replace p, by 

then we still have that the a s .  limit exists as t + co. Using Kronecker's lemma again, 
we get from (13) that I,(r) converges a.s. as t -+ co. This concludes the proof of 
Theorem 5. 
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6 PROOF O F  THEOREM 1 

6.1 It is sufficient to look at the first component of DVM which, in the notations 
of Sections 2 and 3. can be written as follows: 

If c is bounded, so is (N) (see Proposition 4 (iv)) and then both lim,,, c; 'g(c,) and 
lim,,,, N, are tinite as .  ifc, + m, then c ,  'y(c,)N, sliil has a finlte limit which equals 
zero as 

S (c- 'g(c))'d(N) 5 (c- l g ( ~ ) ) ~  dc < m 
10. m )  S [O. m) 

by (1) and Proposition 4 (iv). 

6.2 Next we iook at the second term in i14i. Consider first 

(see (2) and I'ropojitiori 4 (i)j. Aci;ording to Theorem 5 this expression converges since 

by (1) and Proposition 4 (iii) and (iv). 
Ii c, converges to a finite iimit, then it is seen. in a simiiar manner as above, that 

(ML . b), has a finite limit a.s. as t -+ x. If ct -+ x ,  then Kronecker's lemma gives 
that the second term in (14) tends to zero. Theorem 1 is proved. 

7 ADDITIONAL REMARKS. APPLICATION TO LEAST SQUARES 
ESTIMATION 

7.1 It may happen that lim,,, V,M, = 0 as.  even if the functions cit remain 
bounded. Consider for instance the following example. 

Example Let w be a standard Brownian motion, and v E Rd. Let M i  = vw, with 
(M), = vv't. Consider 

We see that c; ' = E-'(8 + vfvt)- 1 ( ~ ' ~  - v?)t, where vi is the i-th component of v, tends 
to E - '(v'v - v?)/v1v which is in general larger than zero. However 

lim VtMt = lim V(E + vlvt)- 'w, = 0 a.s. 
r -  Y 9 - .  
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Observe that in this example ( M ) ,  is singular for all t .  Careful inspection of this 
example leads to assertion (ii) of Corollary 2. 

7.2 This assertion will be proved here. Notice first that rank ( M ) ,  is increasing. 
Assume lim,, , rank (M), = k < d. Then there is t ,  > 0 such that rank(M),  = k for 
t 2 r , .  Assume below that r 2 t , .  Write ( M ) ,  = r,rj, with rank r, = k. Then 

Since there exisi u  constant matrix K and u murtinyale I: ~ i t h  values in Rk such that 
M, = K I:, and an invertible matrix p, such that r, = K p ,  and p,pi = ( Y ) ,  (this claim is 
proved below), we have 

Use now r (~ ! , ,  + rrr)-'p'  = ( I , ,  - EV!(K+) '  W ~ C K  K +  is a left inverse of K. Since the 
limit of V, exists as t -+ and < Y j; ' i; tends to zero by Corollary 2 (i), wc havc 
-. 
I~m,,,'y/~M!=Oa.s. 

In conclusion we prow the above claim in ital~cs as fdlows. lr! view oi  the fact 
that not only rank(M),  remains constant but also I m ( M ) ,  = Im r,, take now k 

" . & Z d  -.- -1- *I- - T-- \~cc~o!-s v ~ ,  . . ., .., - ... ~ u L ! !  L ! ! ~ L  tilt i., - Zm K ii;i:h K = [ x i , .  . .: K,].  The:: there exists 
iiii iiiveitibk ma:rix p, such :ha: r,  = Kp,.  Cefne ccx  Y, = K'M,.  The2 M, - K Y, 
a.s. for all t .  Indeed it is easily verified that (MI - K Y) = 0, and this proves the claim. 

Observe that p,p; = ( Y ) ,  and ( Y ) ,  -. m. Indeed for a V E  Rk, v  # 0 there exists 
u E Rd such that v  = K'u, since K' has a full row rank. Then v'(Y),v = ul (M) ,u .  If 
this remains zero, then u E K e r ( M ) ,  for all t  2 t,. Hence u E Ker K', but this 
contradicts v  # 0. Hence v' (Y) ,v  + CG. 

7.3 As an application we treat least squares estimation for linear models. In 
many instances it is possible to transform the observations in such a way that we may 
assume that we observe .x, = (m) ,8  + m, on 0 I s  I t ,  where m is an Rd valued 
square integrable martingale and 8 an unknown d-dimensional parameter. (For 
example in case of the familiar model y, = ai6' + E,, s  = 1 , .  . . , t  one may define 
X, = a l y l  +... + a,y,). 

The least squares estimator for 8 by definition then minimizes 

where (m):  is a generalized inverse of (m) , .  The set of least square estimators 8, is 
given by { ( m ) , '  x, + K IK E Ker<m), ) .  If  <m) ,  eventually becomes non singular, then 
0, - 8 = (m);'m, and Corollary 2 (i) applies. Otherwise let K be as in Section 7.2. 
Preserving then the notations used there we have 

K'(8, - 8)  = K'(m):m, = ( K K  +)'(Y);  ' K:m, = ( Y ) ;  ' I: -+ 0 as.  
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